LDO 基础知识:噪声 - 前馈电容器如何提高系统性能

本文作者:德州仪器       点击: 2022-04-21 11:38
前言:
在LDO 基础知识:噪声 - 降噪引脚如何提高系统性能一文中,我们讨论了如何使用与基准电压 (CNR/SS) 并联的电容器降低输出噪声和控制压摆率。在本文中,我们将讨论降低输出噪声的另一种方法:使用前馈电容器 (CFF)。

什么是前馈电容器?
前馈电容器是与电阻分压器顶部电阻并联的可选电容器,如图1所示。
 
图 1:使用前馈电容器的低压降稳压器 (LDO)
 
类似于降噪电容器 (CNR/SS),添加前馈电容器具有多种影响。这些影响包括改善噪声、稳定性、负载响应和电源抑制比 (PSRR)。应用报告“使用前馈电容器和低压降稳压器的优缺点”详细介绍了这些优点。另外,还值得注意的是,前馈电容器仅在使用可调LDO时才可行,因为电阻器网络是外部的。
 
改善噪声
作为电压调节控制环路的一部分,LDO的误差放大器使用电阻器网络(R1R2)来提高基准电压的增益,类似于驱动场效应晶体管栅极的同相放大器电路,以使 (VREF × (1 + R1/R2)。这种增加意味着基准的直流电压将按1 + R1/R2系数提高。在误差放大器的带宽内,基准电压的交流元件(例如噪声)也会被放大。
 
通过在顶部电阻器 (CFF) 上添加电容器,会为特定频率范围引入交流分流器。换句话说,该频率范围中的交流元件会保持在单位增益范围内。请记住,您使用的电容器的阻抗特性将决定这个频率范围。
图 2 演示了TPS7A91噪声的减小(通过使用不同的CFF值)。
 
图 2:TPS7A91 噪声与频率和CFF值的关系
 
通过在顶部电阻器上添加一个100nF电容器,您可将噪声从9μVRMS降至4.9μVRMS
 
改进稳定性和瞬态响应
添加CFF还会在LDO反馈环路中引入零点 (ZFF) 和极点 (PFF),使用公式1和2计算得出:
ZFF = 1 / (2 × π × R1 × CFF)            (1)
PFF = 1 / (2 × π × R1 // R2 × CFF)          (2)
 
将零点置于发生单位增益的频率之前可提高相位裕度,如图3所示。
 
图 3:仅使用前馈补偿的典型LDO的增益/相位图
 
您可以看到,如果没有ZFF,单位增益会更早出现,大约为200kHz。通过添加零点,单位增益频率在大约300kHz处略微向右推,但相位裕度也有所改善。由于PFF位于单位增益频率的右侧,因此其对相位裕度的影响将是最小的。
 
在提高LDO的负载瞬态响应后,额外的相位裕度将很明显。通过增加相位裕度,LDO 输出将出现较少的振铃,稳定速度会更快。
 
改善PSRR
根据零点和极点的位置,您还可以战略性地减少增益滚降。图3显示了零点对从 100kHz开始的增益滚降的影响。通过增加频带的增益,您还将改善该频带的环路响应,从而使特定频率范围的PSRR得到改善。请参阅图4。
 
图 4:TPS7A8300 PSRR与频率和CFF值间的关系
 
如您所见,增加CFF电容会将零点向左推,从而改善环路响应和较低频率范围内的相应PSRR。
 
当然,您必须选择CFF的值以及ZFFPFF的对应位置,以避免导致不稳定性。您可以通过遵循数据表中规定的CFF限制来避免不稳定性,但我们通常建议选择介于10nF和 100nF之间的值。较大的CFF可能会带来前面提到的优缺点应用报告中概述的其他挑战。
 
表 1 列出了一些关于CNRCFF如何影响噪声的经验法则。

参数

噪声

 

低频率

(<1kHz)

中频率

(1kHz-100kHz)

高频率

(>100kHz)

降噪电容器 (CNR)

+++

+

没有影响

前馈电容器 (CFF)

+

+++

+

表 1:CNR CFF的优势与频率间的关系
 
结语
添加前馈电容器可以改善噪声、稳定性、负载响应和PSRR。当然,您必须仔细选择电容器以保持稳定性。与降噪电容器配合使用时,可以大大提高交流性能。这些只是优化电源时需要牢记的一些工具。

关于德州仪器(TI)
德州仪器(TI)(纳斯达克股票代码:TXN)是一家全球性的半导体公司,致力于设计、制造、测试和销售模拟和嵌入式处理芯片,用于工业、汽车、个人电子产品、通信设备和企业系统等市场。我们致力于通过半导体技术让电子产品更经济实用,创造一个更美好的世界。如今,每一代创新都建立在上一代创新的基础之上,使我们的技术变得更小巧、更快速、更可靠、更实惠,从而实现半导体在电子产品领域的广泛应用,这就是工程的进步。这正是我们数十年来乃至现在一直在做的事。欲了解更多信息,请访问公司网站www.ti.com.cn。

商标
所有注册商标和其它商标均归其各自所有者专属。