将终端用户设备连接到中央电信网络和云的无线接入网(RAN)和相关的核心网络层次结构,对于构建无处不在的蜂窝网络连接至关重要,它将扩大该技术所支持的应用场景的数量和广度。在制定开发和实施5G RAN和核心设备战略时,要对5G的要求有一个深层次的理解,并了解该技术将在何处、如何以及何时发展,有助于管理预期。
本文概述了5G标准和推广的现状,总结了5G RAN需要支持的全新的应用场景,并研究了标准的演进以支持更高的带宽和更多的应用场景。最后,本文还解释了开发人员如何利用Achronix现场可编程逻辑门阵列(FPGA)技术来应对他们面临的基本挑战——通过一种节省成本、功耗和面积的方式,将部分处理工作负载从CPU卸载到基于FPGA的加速器上,从而支持5G RAN架构的优化。
5G部署和宏观趋势
显然,现在5G不仅仅是用于手机连接的下一代蜂窝网络技术。5G和蜂窝网络连接技术的发展可赋能多个全新的应用场景,并为那些以前没有将蜂窝网络连接作为其产品组合一部分的公司开辟了新的商业机会。5G不再只是提供电信连接,而是成为了赋能其他各种应用场景的连接,诸如工业物联网、汽车、智慧城市和其他应用。5G旨在支撑家庭、城市和工厂中的数十亿个新器件(如摄像头和其他各种传感器)的连接,为医生和患者提供远程医疗支持,支持与IT技术的融合,并全面取代有线连接。
从根本上说,5G是一种比前几代技术更具频谱效率的蜂窝移动通信网络技术实现方案,具有显著增加的空中接口容量,结合波束形成/定向技术,以及聚合4G和5G信道的能力,所有这些都得到了很好的利用。
5G基础设施部署开始增加,预计5G的采用速度比4G更快,移动网络运营商(MNO)推出的5G网络已覆盖10亿用户,这比4G达到类似水平提前了两年。
下表描述了引领未来技术发展和演进的宏观趋势。
表1:影响5G演进的宏观趋势
宏观趋势
|
Description
描述
|
Impact
影响
|
地缘政治压力
|
由于限制西方移动网络运营商使用来自中国供应商的设备,使他们更加注重于努力建立一个更广泛的供应商群体,而不只是目前市场领先的第一阵营供应商。同时,这种建立更广泛供应体系的努力还与一系列新的颠覆性举措的实施相一致,例如成立Open RAN和ORAN联盟。
|
l 减少经批准的供应商数量使得标准化接口成为必要,以实现供应商之间的可互换性
l ORAN参考实现使第二阵营供应商和新兴原始设备制造商(OEM)能够提供可替代的、更优的解决方案
|
扩展5G应用场景
|
在第三代合作伙伴计划(3GPP)的R17和R18版本中,实现了通过增强规范以支持超高可靠、低延迟通信(URLLC)和大规模机器类通信(MMTC)应用场景的真正目标,它们将更高效地利用无线电资源与机器学习技术相结合,以支持高连接密度和低延迟决策。
|
l 中频段部署的空中接口流量处理负载的大幅增加,意味着需要采用新的架构来加速从中央处理器(CPU)子系统中卸载工作负载
|
更多利益相关者推动5G发展
|
4G技术中存在的历史界限越来越模糊,对该技术感兴趣的利益相关者也越来越多样化,包括:
l 诸如云服务提供商等历史上不具备任何蜂窝网络能力或知识的企业,正在研究如何利用其云专业知识在5G上托管工作负载
l 诸如微软(Microsoft)的Azure和AWS的Outpost Edge部署
l 需要利用5G来解决特定问题的工业/汽车企业
|
,
l 需要考虑那些影响5G技术发展方向的新入局者。应该考虑如何将云和无线电技术应用于垂直市场(例如工业和汽车),让不同的参与者带来各自相关领域的专业知识。
|
推动5G转型的构建模块
以前的RAN架构(2G、3G和4G)是基于单块构建模块,逻辑节点之间很少有交互发生。然而,从新无线电(NR)研究的最初阶段开始,人们认为将gNodeB基站(gNB,即NR逻辑节点)在集中式单元(CU)、分布式单元(DU)和无线电单元(RU)之间拆分,将带来更多的灵活性。灵活的硬件和软件实现可支持更具可扩展性和成本效益的网络部署——但前提是硬件和软件组件是可互操作的,并且可以与来自不同供应商的组件进行组合和匹配。
这种拆分化split架构(在集中式单元和分布式单元之间)支持对性能特征、负载管理、实时性能优化进行协调,并能够适应各种应用场景。这种拆分架构还提供了各种应用(如游戏、语音和视频)所需的服务质量(QoS),这些应用对传输有不同的延迟容忍度和依赖性,再加上诸如农村和城市等不同的部署场景也有不同的传输方式,例如光纤与无线。下图介绍了5G部署所需的主要构建模块。
图1:推动5G转型的构建模块
5G不再只是一种RAN,而是需要包含从客户端到数据中心整个网络连接的技术。从历史上看,智能位于蜂窝网络的任一端,包括客户端、基站和核心网络。随着我们向万亿台互联设备迈进,MNO无法再增加越来越多的容量,以便将数据从无线电传输到数据中心进行应用处理,然后再返回到客户端设备。例如,联网的图像传感器数量从今天的4亿只增加到10亿只,那么网络流量将从今天的大约150 EB增加到400 EB。
解决此资本支出问题的一种方法是在整个网络中更均匀地分配智能。这种变化需要分配更多的计算能力,以便能够做出更快、更有效的决策。例如,上图中标记为“多项接入边缘计算处理(Multi Access Edge Compute Processing)”的方框表示支持这种智能分配的附加类型。
上图中圈出的美元值显示了过去四年内在RAN和网络分层结构中设备支出的估计费用。无线通信网络本身的花费非常巨大,为研发支出的费用就高达1200亿美元。
上图表示了构成5G无线电网络的不同单元。为了支持从增强型移动宽带(eMBB)和大规模机器类通信(mMTC),到超高可靠、低延迟通信(URLLC)等一系列不同的5G应用场景,需要灵活地确定这些单元在网络中的物理位置。例如,该图表示分布式单元(DU)如何作为靠近无线电单元(RU)的独立单元,以支持5G的低延迟、更加实时性的需求,而对于eMBB等非延迟密集型应用,DU可以与CU在类似vRAN的部署中位于同一位置。
这种对灵活性的需求促使那些用于这些设计的构建模块也要具有同样的灵活性,并支持这些设计以多种方式对共同的单元进行划分。SoC设计的多样性以及如何实现加速器功能是应对这些挑战的重要因素。
5G RAN需要支持哪些应用场景?
作为定义5G的第一步,国际电信联盟电信标准化局(ITU-T)确定了消费者、企业和行业现在和将来使用蜂窝网络的方式,然后3GPP开始实施所需标准的制定。作为3GPP所推动的新服务和市场技术推动者研究项目SMARTER项目的一部分,其团队确定了蜂窝网络当前和未来的先进应用场景以及所需的特性和功能。
除了一个名为固定宽带的类别外,该机构还定义了三类移动应用场景:mMTC、eMBB和URLLC。虽然这些类别的名称并不是特别吸引人,但它们已成为行业标准术语:
mMTC——大规模机器类通信引入了对大规模的机器对机器交互的支持,包括电池供电的物联网设备。总的来说,这些设备需要相对较低的延迟、高度可靠的连接和高能源效率。其所面临的挑战是为数十亿台物联网设备提供可扩展性和一致的连接性,这些设备的通信频率相对较低、通信时间较短。广泛的覆盖范围和深入的室内穿透性是很重要的,同样低成本也是非常重要的。
eMBB——如果mMTC主要是解决机器如何使用蜂窝网络,那么eMBB就主要解决人类如何使用蜂窝网络。此类应用场景包括8K视频流、沉浸式增强现实/虚拟现实(AR/VR)、互联交通信息娱乐和支持移动宽带连接的企业。该类别的关键要求是超高的频谱效率、极高的数据速率和超低的中断时间。
3GPP的R15版本中定义的5G NR满足了所有这些要求。随着支持5G NR的基础设施开始扩展,这些应用场景变得更加广泛。这一类别可以被认为是发展和变革的结合,因为使用蜂窝网络进行连接的笔记本电脑并不完全是新事物,而沉浸式AR/VR和其他数据密集型应用在前几代蜂窝网络中并没有真正实现。
URLLC – 作为一种服务,为超高可靠性、低延迟通信提供支持,是5G真正革命性的一个方面,因为它提供了在实际应用中尚未出现的性能等级。增加对URLLC的支持可实现智能交通等应用,包括能够在复杂的路况下导航并通过相互协作避免碰撞的车辆,以及与第四次工业革命相关的应用场景,包括时间关键型的工厂自动化等。它还包括远程医疗,其中包括测量生命体征并根据需要自动或半自动响应的设备,以及远程治疗,包括在救护车上、在灾难情况下或在偏远地区,根据远程医生的实时指导进行的手术。
在所有这些情况下,连接都需要非常稳定,并且需要以毫秒级或更低的端到端延迟速率运行。3GPP规范的R16和R17版本中定义了支持URLLC所需的主要功能。换句话说,URLLC代表着5G的未来,即使这个未来只有几年的时间。
每个3GPP规范版本中都增加了各种功能,旨在解决这三个类别在不同方面的问题。在早期的规范版本中,已经解决了今天已经活跃或即将到来的特定应用场景,而未来的应用场景将在以后的版本中得到解决——所有这些都是5G持续发展的一部分。
图2:5G应用场景分类
满足3GPP的R17和R18版本要求的演进
5G的演进发展带来了一系列新的标准,这些标准得到了参与ETSI 3GPP组织的多家公司的认同。但5G标准的演进可能带来哪些技术要求呢?
下图显示了3GPP新标准制定过程的当前状态。当今5G网络中部署的设备主要由3GPP规范R15版本和R16版本中规定的技术组成。更先进的应用场景和由此产生的网络需求将由3GPP规范的未来版本(R17和R18版本)来满足。
今天,3GPP已经通过了R17版本(Rel-17)工作的中点,并计划在2022年中期发布。与此同时,围绕R18版本(Rel-18)目标范围的讨论正在顺利进行。3GPP将Rel-18及其后续版本称为5G Advanced,以确认该技术的发展。
Rel-17的功能旨在提高现有和新应用场景的网络性能。这些新功能在下图中被分为三类:
空中接口和管理功能:
上下拆分L1处理和卸载 – 用于上行和下行信道的L1内核加速
复杂的L1 MAC调度加速
频谱效率、波束管理和动态频谱共享
灵活的DFE处理/卸载
连接性和安全性:
eCPRI卸载和处理(Split 7.x DU/RU灵活性)
回传和安全卸载
网络处理和平衡,包括缓冲区和队列管理
计算和应用加速:
C和U平面管理:在用户路径选择策略中的应用机器学习/人工智能(ML/AI)
网络数据分析
将边缘计算托管放在更接近于无线电单元的地方
带机器学习的无线电和基于应用的处理
本文将在后面的章节中将对这些类别和特征进行更详细的讨论。
图3:3GPP规范新版本时间表
Rel-18或5G Advanced(5G-A)在Rel-17基础上更上一层楼,通过在无线电和网络层次结构中集成机器学习技术来提供更智能的网络解决方案,以支持新的更多的应用场景,并提高网络效率。具体到无线电方面的变化,Rel-18(先进天线系统)是支持提高频谱效率的主要工具,进一步增强了波束形成和大规模多输入/多输出(MIMO),特别是在中频段和低于6 GHz的频谱中。
就5G-A的新应用场景而言,除了汽车和工业领域,还有国家安全和公共安全应用。在这些应用场景中,这些新功能可用于支持无人机的远程控制和恶意无人机检测等。
5G网络分层结构和无线电——下一代网络推动了对多样化解决方案的需求
有许多驱动因素影响着对平台多样性的需求。移动网络运营商一直希望将他们的网络建立在基于网络功能虚拟化(NFV)和软件定义网络(SDN)的技术上,并在商用现成(COTS)服务器上运行。然而,Achronix认为单一的同质化设计无法满足5G发展的所有要求。不同的工作负载给网络带来了不同的压力,从而推动对不同解决方案的出现,以来满足这些需求。
新的架构将能够灵活地在集中式单元和分布式单元之间拆分和移动5G NR功能,这种架构带来的好处包括:
更灵活的硬件实现方式,支持更具可扩展性、更具成本效益的解决方案。
能协调性能特征、负载管理、实时性能优化等功能,并根据应用场景启用NFV/SDN技术。
不同的部署场景可赋能eMBB、uRLLC和mMTC等不同的应用场景。反过来,这些不同的部署场景通过适应网络分层结构/架构(例如ORAN)的变化,以及通过网络切分等新功能动态分配网络资源,进而支持无线电技术的发展。
新的网络/功能切分可能会影响对不同设备和系统级芯片(SoC)选择的需求。
图4:应用场景、切分和多样性
上图显示了3GPP标准中规定的不同选项切分,以支持新兴的应用场景和相应的不同流量类型。该图显示了L1、L2和L3的不同split,以及在CU、DU和RU上相应地运行的不同功能。其中两个最受欢迎的选项是:
L2 Option 6 split,这时上层功能被集中在网络中,但与无线电相关的特定流量调度和无线电链路控制被推向更靠近射频网络的位置。
L1 Option 7.x split,此时上层的L1处理被集中于L2和L3功能,只有下层L1 Phy功能被填充到RU中。
下图以图形方式展示了5G NR带来的挑战,即支持某些新天线配置所需的大量处理性能。图中左侧为具有2路发送和2路接收(2T2R)的低频段(20 MHz)MIMO天线,右侧为具有64路发送和64路接收(64T64R)的中频段(100 MHz)天线。从低频段到中频段的演进支持更高的频谱通道,有可能实现频谱共享、双连接和4G载波聚合。这些中频段要求还需要支持低于0.5 ms传输间隔,以及需要大量的波束形成和定向处理。
因此,如下图所示,此时所需的计算能力,尤其是L1处理所需的计算能力,随着这些更高的带宽开始呈指数级增长。空中接口的第1层处理,以及管理中频段频谱波束形成和定向,需要比低频段部署更高的处理要求。
图5:5G低频段和中频段频谱所需的处理负载(来源:爱立信博客)
为了满足L1处理负载的要求,业界必须考虑引入不同的异构解决方案,以高效地满足处理需求(从性能和功耗的角度来看)。再加上新的网络/功能split,这些新的解决方案可能会带来多样化的设备和SoC选项需求。因此,单一的同质化解决方案无法满足所有的RAN需求。
5G设备的分布化推动了对灵活性和加速功能的需求
在Rel-17和Rel-18中提出的新要求推动了对更高灵活性,以及从单一CPU架构子系统中加速卸载负载的需求。下图显示了5G网络中的主要单元:RU、DU和CU。对于这些单元中的每一个,都需要考虑如何利用由CPU、DSP和加速器(例如GPU、FPGA和eFPGA)构成的异构架构,来满足这些新设计的延迟、功耗、面积和成本目标。
网络运营商一直希望尽可能多地使用云原生、基于软件的技术来实现所有的RAN功能(基于RAN的集中式部署),并假设在基于x86或Arm®的CPU平台上运行的解决方案能够最大限度地提高灵活性。研究表明,对于低频段部署(大约600-700 MHz,服务带宽为50-25 Mbps),基带和控制可以在CPU平台上以最小量的加速卸载来提供服务。其结果是实现了集中的DU和CU功能,使用光纤连接到RU,在无线电中只有最少的处理功能。
在各种部署中,都可以利用一个COTS服务器来处理一个具有单个CPU内核的低频段单元的所有事务。对于这些类型的部署,将软件中的所有内容作为虚拟化或容器化工作负载运行,其性能、成本和功耗需求都是可行的。在这种情况下,从图中可以看出,DU中的L2+功能以及L1的大部分处理都可以与CU中的核心网络功能一起位于小型服务器中。
然而,随着各种部署转向6 GHz以下的中频段,如大约在3.5至3.6 GHz范围内,正如在前面的图中所看到的,无线电处理(包括L1模块中的基带功能和L2模块中的大部分功能)几乎呈指数级增长。在这种情况下,下行和上行处理负载会增加20-40倍。在没有加速功能的情况下,运行一个带有完整负载的中频段单元将需要超过16个x86内核。然而,这样一个系统的成本和功耗在商业上是不可行的,因此需要将某些L1层和L2层功能卸载到专用硬件中,其重要性在未来日益凸显——硬件加速器要么位于CU中,要么分布在远程DU和RU中更接近于无线电接口的位置。
图6:5G设备的分散化推动了对更高灵活性和加速功能的需求
除了CNF/VNF之外,这里列出的项目是从x86、Arm或R5 CPU子系统中卸载工作负载到硬件加速器的理想选择。一些示例如下:
在盒子之间的接口上进行网络处理和分类管理,包括传输/后传/安全接口、eCPRI前传接口,或需要流量管理器、分类器等的地方
L1处理和波束形成是必须使用加速的另一个领域,可利用DSP或eFPGA技术或两者兼而有之来实现加速功能,这对实现吞吐量最大化和优化功耗至关重要。
此外,在2025年前,几乎所有RAN SoC的默认要求都可能是机器学习加速——这一功能不仅可以应用于在5G上运行的应用场景中的学习和推理功能,还可以应用于RAN L1物理层的增强。研究表明,AI/ML可以显著提高L1 PHY性能,其中第一个研究领域是AI/ML增强可以应用于波束管理、信道估算和预测。
5G Advanced、eFPGA和FPGA加速
未来,FPGA和eFPGA技术可用于5G设计的各个领域。正如前面所讨论的,在可编程性和计算效率之间总是存在着利弊权衡。虽然CPU提供了终极的可编程性,但基于图形处理器(GPU)、FPGA和专用集成电路(ASIC)的硬件解决方案总是提供更低功耗这一优势,但灵活性却大大降低。
从历史上看,FPGA已被广泛用于前几代的蜂窝网络的设计中。在3G和4G设计中,系统的重要部分是围绕独立FPGA设计的。这些FPGA用于加速空中接口的某些功能,它们与基带单元上用于空中接口处理的DSP紧密结合。FPGA还用于CPRI连接的传输和安全接口、机箱接口和回传以及安全接口。
在ASIC中集成FPGA功能可使5G设计所面临的一些挑战得以解决。与独立FPGA相比,在SoC中集成eFPGA功能可以提供一种更低成本的解决方案,因为设计人员能够只选择嵌入所需的资源,同时减少了电路板面积、增加了封装和I/O。在与CPU和DSP资源紧密耦合的SoC上进行集成,可提供更高的带宽、更低的延迟和更低的功耗,同时还能随着规格的变化对已部署的设备进行实时现场升级,从而提高灵活性。
图7:5G Advanced:用于异构计算加速的eFPGA IP和FPGA
在上图中,红色方框说明了如何使用Achronix eFPGA和FPGA技术将灵活性集成到全新的RU、DU和CU设计中,其实现方式既可以是一个独立的器件、单片SoC,也可以在chiplet设计中作为其中一颗晶粒被封装在多芯合封模块中。
对于CU和核心RAN应用,可以使用一个或多个FPGA来支持非常高的数据速率和计算密度,以帮助服务器卸载各种面向特定的网络和无线电的工作负载。
Achronix正在与该领域内的许多伙伴进行合作,他们正在开发有针对性的解决方案。Napatech和Accolade等公司正在开发面向智能网卡(SmartNIC)的FPGA半导体知识产权(IP)。这些SmartNIC可用于多种不同的5G需求,包括用于基于vRAN部署的DU。由此产生的设计包括用于网络、PDCP、安全(空中接口和回传)、OVS和L1卸载的技术。未来,这些解决方案很可能还将用于多接入边缘计算的机器学习推理,特别是无线电应用。
上图中的红色单元代表了RU和DU中的eFPGA功能,以及如何将一个或多块嵌入式FPGA(eFPGA)逻辑块与CPU、DSP和存储子系统一起集成到SoC设计中。
在SoC上集成eFPGA
eFPGA是集成到定制SoC或ASIC中的内核。该IP可以通过购买授权获得并使用,这类似于半导体设计中使用的其他IP。与独立FPGA的设计过程不同,eFPGA设计人员可以根据其客户应用的需要,选择确切数量的逻辑、DSP和存储资源。在进入大批量生产时,eFPGA还可通过取代独立的FPGA来降低系统成本、功耗和电路板面积。
Speedcore™ eFPGA IP架构包含了许多架构性增强功能,可显著提高性能、降低功耗并缩小芯片面积。在选择Speedcore eFPGA时,设计人员可以选择架构性单元的最佳组合,包括:
逻辑 – 6输入查找表(LUT)及集成广泛的MUX功能和快速加法器
逻辑RAM – 对于LRAM2k,每个存储块容量为2 kb;对于LRAM4k,每个存储块容量为4 kb
块RAM – 对于BRAM72k,每个存储块容量为72 kb;对于BRAM20k,每个存储块容量为20 kb
DSP64 – 每个单元块上带有18 × 27乘法器、64位累加器和27位预加器
机器学习处理器(MLP) – 每单元块上有32个乘法器/累加器(MAC),支持整数和浮点格式
在基于SoC的设计中集成eFPGA功能是一种理想的方式,可以提供一个灵活的、可扩展的平台,以最大限度地提高RAN设计性能,同时仍能满足这些新设计严格的功耗目标。集成eFPGA技术可以在提供独立FPGA所具有的优势之外,还可以提供一些额外的优势:
与CPU或GPU方案相比,在相同的计算能力下,这些基于eFPGA的设计的功耗更低,并可灵活地增加和更改功能。
eFPGA的可重新配置特性提供了灵活性,以满足不断演进发展的标准,并可对已部署在现场的设备进行更新
一个低延迟、高能效、高度灵活的eFPGA IP块可以在多个SoC设计中重复使用
将FPGA功能与CPU、DSP和存储子系统紧密耦合也带来了优势。独立的FPGA芯片是通过它自己及其他芯片上集成的高速SerDesS/PHY与它们相连,它们都需要消耗电能。将eFPGA集成到SoC中,就可以消除设计中两侧芯片对SerDes接口的需求,并且只需要部署您实际需求所需的功能,因而在芯片面积上也当然有所节省。
设计人员可以选择集成单个或多个eFPGA实例,它们可以被集成在一颗SoC中的任何地方,其大小可以从几千个LUT扩展到几十万个LUT。这些eFPGA实例可以与CPU子系统紧密耦合,以高效地利用共享缓存和存储子系统来执行高性能、低延迟的任务。例如,Arm提供的可CHI-E总线作为其架构的一部分,支持一致的网状互连,从而支持一些应用程序将CPU上的高负载卸载到eFPGA单元块中进行专项处理。
图8:使用eFPGA来满足ASIC/SoC中的5G Advanced功能:RU、DU(和CU)实现
Speedcore eFPGA技术已经过量产验证。我们的客户已经为这些类型的应用提供了超过1000万个搭载该IP的器件,它们已被用于各种功能,包括支持eCPRI连接、后传和安全接口、用于数字预失真适应的无线电数字前端(DFE)算法功能卸载、波束形成卸载以及带有Split L1(I/FFT、RACH、LDPC等)的基带重新分隔。
eFPGA作为5G NR功能的加速器
Achronix的目标是使用Speedster®独立FPGA芯片和Speedcore eFPGA IP技术来满足5G-A和6G的需求。Achronix与合作伙伴一道致力于开发各种解决方案,以应对影响5G发展所面临的当前和长期趋势。Achronix的技术可以提供的一些优势包括:
用于加速各种5G工作负载的高性能架构——Achronix为每种功耗/面积预算提供高性能的解决方案,并支持FPGA和eFPGA技术以卓越的能效加速工作负载。
多样化的解决方案和生态系统——Achronix支持设计人员可以自由地紧密耦合定制加速器,并为基于eFPGA和FPGA的环境提供补充操作。Achronix生态系统包括了广泛的合作伙伴,共同推动包括eCPRI、无线电卸载和芯片到芯片(C2C)互连等5G功能创新。
可从云扩展到无线电接口——Achronix解决方案提供了为服务器卸载工作负载所需的性能,包括适用于5G应用的FPGA SmartNIC设计,以及通过eFPGA扩展性能来满足RAN中的吞吐量和功耗需求。此外,该架构可在其间的所有的点上进行扩展。
本文重点介绍了5G演进发展过程中面临的主要挑战:
数据处理——为实现更高的频谱效率并满足端到端的延迟要求,5G RAN需要在数据处理中执行更复杂的算法。在考虑这些算法的需求时,重要的是要在硬件和软件任务之间找到适当的平衡,以便系统达到其性能、功耗和成本的目标。对于从CPU子系统中卸载工作负载,eFPGA是一种理想的选择。
部署场景——一种给定的RAN所支持的特定应用场景对整个系统有很大的影响,因为每个应用场景(mMTC、eMBB、URLLC)都有其独有的特点。一种方案可能不适用于所有场景。决定如何在不同的设备之间划分网络功能以支持给定的应用场景集可能会影响RAN设计。
无线电和频谱——5G使用更多的频谱,设备在低频段(低于1 GHz)、中频段(1 GHz至2.6 GHz或3.5 GHz至8 GHz)和高频段(24 GHz至40 GHz)运行。每个频段对边缘性能、容量、速度和延迟都有自己的一组要求。随着新的频谱资产可用,这些不同的要求需要由RAN系统来满足。
供应链和生态系统——5G正在以多种方式颠覆供应链。一些计划旨在减少对供应商的依赖,同时专有和开放软件平台的可用性也在日益增加。基础设施的支持等级也因地区而异。原始设备制造商(OEM)可能需要重新评估和修正他们的生态系统合作伙伴关系。
新兴标准——对5G标准演进的投资规模是巨大的,以支持新的应用场景和附加功能。特别是Rel-17和Rel-18将支持许多新的应用场景。除了3GPP,还有一些独立的行业组织,如电信基础设施项目(TIP)和Open RAN联盟(O-RAN),他们正在致力于5G运营和部署方面的工作。越来越多的人倾向于将O-RAN联盟作为推动接口规范发展的关键行业组织。
总结
无线接入网和5G网络分层结构将发生变化。将设备形态从今天的基带和无线电功能分散到单独的盒子中,将要求功能可能位于网络的多个不同部分,以支持不同的可选split项。未来,移动网络运营商将需要使用切分技术动态地划分网络功能。随着整个网络功能的虚拟化,使用运行在商用标准化(COTS)服务器上的容器化和虚拟化功能将变得非常普遍。然而,5G的成功取决于实现灵活的、可扩展的平台,其功耗、吞吐量和延迟是支持L1和天线中大规模MIMO的关键,尤其是在RAN中。在网络分层结构中,边缘计算等新功能将需要把机器学习功能推向更靠近无线电接口的位置。带有CPU和DSP功能的可扩展、异构SoC架构,加上其可将工作负载卸载到FPGA和基于ASIC、SoC、ASSP的eFPGA上的加速能力,将因为可满足近期和中期的5G规范变化而被广泛采用。
总之,eFPGA IP是应对这些新设计挑战的关键要素,这是因为它具有可扩展功能,用以满足3GPP R17和R18即5G Advanced和6G中的新规范,以及实现一些尚未可知的功能。